Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(1): 1718-1725, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548433

RESUMO

Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π-π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a VOC of 0.83 V, a JSC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.

2.
ACS Appl Mater Interfaces ; 13(49): 59043-59050, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865485

RESUMO

In this work, two asymmetric non-fullerene acceptors (NFAs), BTP-EHBO-4F and BTP-PHD-4F, are designed to be applied in green-solvent-processable organic photovoltaics (OPVs). BTP-EHBO-4F and BTP-PHD-4F show good solubilities in green solvent o-xylene. As a result, PM6:BTP-EHBO-4F-based devices exhibit outstanding photovoltaic performances using o-xylene as a solvent. By comparison, due to the poor solubility of Y6 in o-xylene, PM6:Y6-based devices show poor performances. Owing to the favorable phase separation, molecule packing, and orientation observed from atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements, PM6:BTP-PHD-4F-based devices demonstrate a PCE of 15.91% with a VOC of 0.87 V, a JSC of 25.64 mA/cm2, and an FF of 71.34%. Moreover, PM6:BTP-EHBO-4F-based devices exhibit an impressive PCE of 16.82% with a VOC of 0.85 V, a JSC of 26.12 mA/cm2, and an FF of 75.78%, which is outstanding for OPVs using o-xylene as a solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...